DIASTEREOSELECTIVE SYNTHESIS OF (E)-1-TRIMETHYLSILYL-3-EN-1-YNES BY PALLADIUM-CATALYZED CROSS-COUPLING REACTION BETWEEN TRIMETHYLSILYLETHYNYLZINC CHLORIDE AND STEREOISOMERIC MIXTURES OF 1-BROMO-1-ALKENES¹

Bianca Patrizia Andreini, Adriano Carpita, and Renzo Rossi Dipartimento di Chimica e Chimica Industriale - Università di Pisa -via Risorgimento 35 - 56100 PISA - ITALY

Summary: In the stereospecific palladium-catalyzed cross-coupling reaction of trimethylsilylethynylzinc chloride, (E)-1-bromo-1-alkenes react preferentially in the presence of the corresponding (2)-stereoisomers.

In continuation of our studies on highly diastereoselective palladium-catalyzed reactions involving the use of diastereoisomeric mixtures of alkenyl bromides 2-4, we now wish to report a simple and convenient procedure for the diastereoselective synthesis of (E)-1-trimethylsilyl-3-en-1-ynes (3). This procedure stems from the observation that in the stereospecific palladiumcatalyzed reaction of trimethylsilylethynylzinc chloride (2), (E)-1-bromo-1-alkenes,(E)(1), react preferentially in the presence of the corresponding (Z)-stereoisomers,(Z)(1).

Thus, when treated with n equiv of $\underline{2}$ and 2 mol% of $(PPh_{2})_{A}Pd$ in THF at room temperature for 8h, an easily available diastereoisomeric mixture of $\frac{1}{2}$ which contains n equiv of (E)- $\frac{1}{2}$ affords in good isolated yields an (E)-1-trimethylsilyl-3-en-1-yne (3) having 95.5-98.4% stereoisomeric purity^{5,6}.

Some typical results are summarized in Table.

TABLE

Diastereoselective synthesis of (E)-1-trimethylsilyl-3-en-1-ynes (3).

Reagent		Product : (E)- <u>3</u>		
F.	(E)/(Z)-1	Isolated yield(%) ^a	Stereoiso- meric purity(%)	Com- pound
n-C ₃ H ₇ n-C ₄ H ₉ n-C ₅ H ₁₁	54.1/45.9 38.0/62.0 61.4/ 38.6	75.0 77.0 80.9	95.5 98.4 ≽96.0	<u>3a</u> <u>3b</u> <u>3c</u>

a) Based on (E)-1

It is interesting to note that compounds $\underline{3}$ can be easily transformed into the corresponding (E)-3-en-1-ynes ($\underline{4}$)^{7,8}, some of which are interesting intermediates for the synthesis of naturally occurring polyunsaturated compounds. Thus, when treated with a slurry of KF 2H₂0 in DMF at 25°, compound $\underline{3a}$ produces the corresponding (E)-3-en-1-yne, $\underline{4a}$, in 58% yield. The reaction of $\underline{4a}$ with stereoisomerically pure (E)-1-acetoxy-3-iodo-1-propene ($\underline{5}$)(1.2 eq), in the presence of (PPh₃) Pd (0.03 eq), CuI (0.06 eq) and Et₃N (3 eq) in benzene at 20° for 24h, affords 96% stereoisomerically pure (2E,6E)-1-acetoxy-2,6-decadien-4-yne ($\underline{6}$) in 83% isolated yield (Scheme 1).Compound $\underline{6}$ is an acetylenic substance isolated from <u>Grindelia</u> species⁹.

Obviously, similar procedures could be employed to prepare other naturally-occurring acetylenic compounds characterized by an (E,E)-1,5-dien-3-yne molety 9,10 .

<u>ACKNOWLEDGMENTS</u>: This work was supported by the National Research Council of Italy (CNR), Special Grant I.P.R.A.-Sub-project 1 - Paper N 980, and by Ministero della Pubblica Istruzione.

REFERENCES AND NOTES

1) This work was presented as a part of R.R.'s lecture at the II Session of the Ischia Advanced School of Organic Chemistry(Ischia, May 25-30, 1986); 2) R.Rossi, A.Carpita, and P.Piccardi, in "Pesticide Chemistry:Human Welfare and the Environment", J.Miyamoto and P.C.Kearney Eds,Pergamon Press, Vol 1, pp 129-134 (1983); 3) R.Rossi and A.Carpita, Tetrahedron Lett., 27, 2529 (1986); 4) A.Carpita and R.Rossi, Tetrahedron Lett., in the press; 5) The stereoisomeric purity of the reaction products was evaluated by GLC on a Permaphase PEG capillary column.Their stereochemistry was confirmed by comparing them with stereoisomeric mixtures of (E)- and (Z)-3 prepared by treatment of (E)/(Z)-1 with a large molar excess of 2; 6) All new compounds exhibited satisfactory spectral and physical properties; 7) J.A.Miller and G.Zweifel, Synthesis, 128 (1983); 8) These compounds can be also conveniently prepared by a stereospecific coupling reaction of (E)-1-iodo-1-alkenes with 2-methyl-3-butyn-2-ol, in the presence of catalytic amounts of CuI and (PPh) Pd, using aq 5.5N NaOH as base, C H as solvent, and BnEt $N^{+}C1^{-}$ as phase transfer agent, followed by treatment of the so obtained enynols with a catalytic amount of solid NaOH in toluene at 110° for 0.5h.This procedure has been employed to prepare (E)-3-nonen-1-yne (4b) in 69.4% overall yield; (For previous examples of Pd-Cu catalyzed reactions between 1alkynes and alkenyl or aryl halides under phase-transfer conditions see: A. Carpita, A. Lezzi, R.Rossi, F.Marchetti, and S.Merlino, Tetrahedron, 41, 621 (1985) and references cited therein); 9) F.Bohlmann, W.Thefeld, and C.Zdero, Chem.Ber., 103, 2245 (1970); 10) F.Bohlmann and H.C. Hummel, Chem.Ber., 103, 3419 (1970).

(Received in UK 10 September 1986)